

Ficha técnica do produto: Aquecedor de ambiente conforme regulamento (UE) N.º 811/2013 / (S.I. 2019 N.º 539 / Programa 2)

		HPA-O 05.2 Plus HC 230
		207429
Fabricante		STIEBEL ELTRON
Classe de eficiência energética do aquecimento de divisões sob condições climáticas médias para as respetivas utilizações a média temperatura		A+++
Classe de eficiência energética do aquecimento de divisões sob condições climáticas médias para as respetivas utilizações a baixa temperatura		A+++
Potência térmica nominal sob condições climáticas médias para as respetivas utilizações a média temperatura (Prated)	kW	6
Potência térmica nominal sob condições climáticas médias para as respetivas utilizações a baixa temperatura (Prated)	kW	6
Eficiência energética sazonal do aquecimento ambiente sob condições climáticas médias para aplicações de temperatura média (η s)	%	160
Eficiência energética sazonal do aquecimento ambiente sob condições climáticas médias para aplicações a baixa temperatura (η s)	%	211
Consumo anualde energia sob condições climáticas médias para as respetivas utilizações a média temperatura (QHE)	kWh/a	2976
Consumo de energia sob condições climáticas médias para as respetivas utilizações a baixa temperatura (QHE)	kWh/a	2285
Possibilidade de funcionamento exclusivamente em horas de vazio		-
Potência térmica nominal sob condições climáticas mais frias para as respetivas utilizações a média temperatura (PRATED)	kW	5
Potência térmica nominal sob condições climáticas mais frias para as respetivas utilizações a baixa temperatura (Prated)	kW	5
Potência térmica nominal sob condições climáticas mais quentes para as respetivas utilizações a média temperatura	kW	6
Potência térmica nominal sob condições climáticas mais quentes para as respetivas utilizações a baixa temperatura (Prated)	kW	5
Eficiência energética sazonal do aquecimento ambiente em climas mais frios, cada uma para aplicações de temperatura média (η s)	%	140
Eficiência energética sazonal do aquecimento de divisões em climas mais frios, cada uma para aplicações a baixa temperatura (ηs)	%	184
Eficiência energética sazonal do aquecimento de divisões em climas mais quentes para aplicações de temperatura média (ηs)	%	188
Eficiência energética sazonal do aquecimento ambiente em climas mais quentes para aplicações a baixa temperatura (Ŋs)	%	263
Consumo anual de energia sob condições climáticas mais frias para aplicações de temperatura média (QHE)	kWh/a	3436
Consumo anual de energia sob condições climáticas mais frias para aplicações a baixa temperatura (QHE)	kWh/a	2835
Consumo anual de energia sob condições climáticas mais quentes para aplicações de temperatura média (QHE)	kWh/a	1558
Consumo anual de energia sob condições climáticas mais quentes para aplicações a baixa temperatura (QHE)	kWh/a	1101
Nível de potência sonora, exterior	dB(A)	43

ENERG енергия · ενεργεια

HPA-O 05.2 Plus HC 230

STIEBEL ELTRON

G

Ficha técnica do produto: Aquecedor de ambiente conforme regulamento (UE) N.º 811/2013 / (S.I. 2019 N.º 539 / Programa 2)

		HPA-O 05.2 Plus HC 230
		207429
Fabricante		STIEBEL ELTRON
Eficiência energética sazonal do aquecimento ambiente sob condições climáticas médias para aplicações a baixa temperatura (η s)	%	211
Classe do regulador de temperatura		IV
Contributo do regulador de temperatura para a eficiência energética de aquecimento de divisões	%	4
Eficiência energética do aquecimento de divisões do sistema composto sob condições climáticas médias	%	166
Eficiência energética do aquecimento de divisões do sistema composto sob condições climáticas mais frias	%	146
Eficiência energética de aquecimento de divisões do sistema compostosob condições climáticas mais quentes	%	196
Valor da diferença entre a eficiência energética de aquecimento de divisões sob condições climáticas médias e da mesma sob condições climáticas mais frias	%	20
Valor da diferença entre a eficiência energética de aquecimento de divisões sob condições climáticas mais quentes e da mesma sob condições climáticas médias	%	30
Classe de eficiência energética do aquecimento de divisões sob condições climáticas médias para as respetivas utilizações a baixa temperatura		A+++
Classe de eficiência energética de aquecimento de divisões do sistema composto sob condições climáticas médias		A+++

		HPA-O 05.2 Plus HC 230
Fabricante		207429 STIEBEL ELTRON
Fonte de calor		Luft
Bomba de calor de baixa temperatura	·	-
Com aquecedor adicional	 -	-
Aquecedor combinado com bomba de calor	 ,	
Potência térmica nominal sob condições climáticas mais frias para as respetivas utilizações a média temperatura (PRATED)	kW	5
Potência térmica nominal sob condições climáticas médias para as respetivas utilizações a média temperatura (Prated)	kW	6
Potência térmica nominal sob condições climáticas mais quentes para as respetivas utilizações a média temperatura	kW	6
Tj = -7°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	3,0
Tj = -7°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	5,2
Tj = 2°C potência calorífica da área de carga parcial sob condições climáticas mais frias (Pdh)	kW	2,3
Tj = 2°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	3,2
Tj = 2°C potência calorífica da área de carga parcial sob condições climáticas mais quentes (Pdh)	kW	5,6
Tj = 7°C potência calorífica da área de carga parcial sob condições climáticas mais frias (Pdh)	kW	2,8
Tj = 7°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	2,8
Tj = 7°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	3,6
Tj = 12°C potência calorífica da área de carga parcial sob condições climáticas mais frias (Pdh)	kW	3,3
Tj = 12°C potência calorífica da área de carga parcial sob condições climáticas médias (Pdh)	kW	3,2
Tj = 12°C potência calorífica da área de carga parcial sob condições climáticas mais quentes (Pdh)	kW	3,2
Tj = temperatura bivalente sob condições climáticas mais frias (Pdh)	kW	4,1
Tj = temperatura bivalente sob condições climáticas médias (Pdh)	kW	5,2
Tj = temperatura bivalente sob condições climáticas mais quentes (Pdh)	kW	5,6
Tj = Temperatura limite de funcionamento sob condições climáticas mais frias (Pdh)	kW	3,0
Tj = Temperatura limite de funcionamento sob condições climáticas médias (Pdh)	kW	4,6
Tj = Temperatura limite de funcionamento sob condições climáticas mais quentes (Pdh)	kW	5,6
Para bombas de calor ar-água: Tj = -15°C (se TOL< -20°C) (Pdh)	kW	4,1
Temperatura de bivalência sob condições climáticas mais frias (Tbiv)	°C	-15
Temperatura bivalente sob condições climáticas médias (Tbiv)	°C	-7
Temperatura de bivalência sob condições climáticas mais quentes (Tbiv)	°C	2
Eficiência energética sazonal do aquecimento ambiente em climas mais frios, cada uma para aplicações de temperatura média (ηs)	%	140
Eficiência energética sazonal do aquecimento ambiente sob condições climáticas médias para aplicações de temperatura média (ηs)	%	160
Eficiência energética sazonal do aquecimento de divisões em climas mais quentes para aplicações de temperatura média (ηs)	%	188
Tj = -7°C coeficiente de eficiência da área de carga parcial sob condições climáticas mais frias (COPd)		3,10
Tj = -7°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		2,76
Tj = 2°C coeficiente de eficiência da área de carga parcial sob condições climáticas mais frias (COPd)		4,21
Tj = 2°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		4,06

Tj = 2°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		2,92
Tj = 7°C coeficiente de eficiência da área de carga parcial sob condições climáticas mais frias (COPd)		5,33
Tj = 7°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		5,11
Tj = 7°C coeficiente de eficiência da área de carga parcial sob condições climáticas mais quentes (COPd)		4,24
Tj = 12°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		6,68
Tj = 12°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		6,49
Tj = 12°C coeficiente de eficiência da área de carga parcial sob condições climáticas médias (COPd)		5,98
Tj = temperatura bivalente sob condições climáticas mais frias (COPd)		2,44
Tj = temperatura bivalente sob condições climáticas médias (COPd)		2,76
Tj = temperatura bivalente sob condições climáticas mais quentes (COPd)		2,92
Tj = Temperatura limite de funcionamento sob condições climáticas mais frias (COPd)		1,83
Tj = Temperatura limite de funcionamento sob condições climáticas médias (COPd)		2,46
Tj = Temperatura limite de funcionamento sob condições climáticas mais quentes (COPd)		2,92
Para bombas de calor ar-água: Tj= -15°C (se TOL< -20°C) (COPd)		2,44
Valor limite da temperatura de funcionamento sob condições climáticas mais frias (TOL)	°C	-22
Limite de temperatura de funcionamento sob condições climáticas médias (TOL)	°C	-10
Valor limite da temperatura de funcionamento sob condições climáticas mais quentes (TOL)	°C	2
Valor limite da temperatura de funcionamento da água de aquecimento sob condições climáticas mais frias (WTOL)	°C	75
Valor-limite da temperatura de funcionamento da água de aquecimento sob condições climáticas médias (WTOL)	°C	75
Valor limite da temperatura de funcionamento da água de aquecimento sob condições climáticas mais quentes (WTOL)	°C	75
Consumo de corrente Estado de desativação (Poff)	W	9
Consumo de corrente estado desligado do termostato (PTO)	W	18
Consumo de corrente em modo de espera (PSB)	W	9
Consumo de corrente em estado de funcionamento com aquecimento do cárter (PCK)	W	0
Potência térmica nominal do aquecedor auxiliar sob condições climáticas mais frias (PSUP)	kW	2,0
Potência térmica nominal do aquecedor auxiliar sob condições climáticas médias (PSUP)	kW	1,2
Potência térmica nominal do aquecedor auxiliar sob condições climáticas mais quentes (PSUP)	kW	0,0
Tipo de alimentação de energia de aquecedor adicional		elektrisch
Controlo da potência		veränderlich
Nível de potência sonora, exterior	dB(A)	43
Consumo anual de energia sob condições climáticas mais frias para aplicações de temperatura média (QHE)	kWh/a	3436
Consumo anualde energia sob condições climáticas médias para as respetivas utilizações a média temperatura (QHE)	kWh/a	2976
Consumo anual de energia sob condições climáticas mais quentes para aplicações de temperatura média (QHE)	kWh/a	1558
Fluxo de volume Fluxo da fonte de calor	m³/h	2740